Oxidative stress induces phosphorylation of the ABC transporter, ATP-binding protein, in Porphyromonas gingivalis.
نویسندگان
چکیده
The Gram-negative anaerobic bacterium Porphyromonas gingivalis is a major causative agent of periodontal disease. Although P. gingivalis is an anaerobic bacterium, it exhibits aerotolerance and can survive in periodontal pockets, indicating that it must possess a mechanism for protection against oxidative stress, although the precise details are still unclear. Recently, phosphorylation signaling has been implicated in the regulation of bacterial virulence. In the present study, to examine the effect of oxidative stress on phosphorylation of proteins in P. gingivalis, we analyzed oxidative stress-induced alterations of phosphorylated proteins using two-dimensional electrophoresis with phosphoprotein staining coupled with MALDI-TOF mass spectrometry analysis. Among the phosphorylated proteins analyzed, we identified an increase in phosphorylation of the ABC transporter, ATP-binding protein (PG0258). Since the ABC transporter family is known to be involved in lipopolysaccharide (LPS) biosynthesis, we examined the level of LPS using an endotoxin assay and found that LPS production was increased in P. gingivalis. Our present findings suggest that the early response of P. gingivalis to oxidative stress could trigger the development and progression of periodontal disease through enhancement of LPS production by phosphorylation of the ABC transporter, ATP-binding protein.
منابع مشابه
Identification of Porphyromonas gingivalis genes specifically expressed in human gingival epithelial cells by using differential display reverse transcription-PCR.
Porphyromonas gingivalis, one of the causative agents of adult periodontitis, can invade and survive within host epithelial cells. The molecular mechanisms by which P. gingivalis induces uptake and adapts to an intracellular environment are not fully understood. In this study, we have investigated the genetic responses of P. gingivalis internalized within human gingival epithelial cells (GECs) ...
متن کاملThe role of ATP-binding cassette transporter A2 in childhood acute lymphoblastic leukemia multidrug resistance
Acute lymphoblastic leukemia (ALL) is one of the most prevalent hematologic malignancies in children. Although the cure rate of ALL has improved over the past decades, the most important reason for ALL treatment failure is multidrug resistance (MDR) phenomenon. The current study aims to explain the mechanisms involved in multidrug resistance of childhood ALL, and introduces ATP-binding cassette...
متن کاملInvolvement of PG2212 zinc finger protein in the regulation of oxidative stress resistance in Porphyromonas gingivalis W83.
The adaptation of Porphyromonas gingivalis to H2O2-induced stress while inducible is modulated by an unknown OxyR-independent mechanism. Previously, we reported that the PG_2212 gene was highly upregulated in P. gingivalis under conditions of prolonged oxidative stress. Because this gene may have regulatory properties, its function in response to H2O2 was further characterized. PG2212, annotate...
متن کاملGene expression in Porphyromonas gingivalis after contact with human epithelial cells.
Porphyromonas gingivalis, a gram-negative oral anaerobe, is strongly associated with adult periodontitis. The adherence of the organism to host epithelium signals changes in both cell types as bacteria initiate infection and colonization and epithelial cells rally their defenses. We hypothesized that the expression of a defined set of P. gingivalis genes would be consistently up-regulated durin...
متن کاملLPS from P. gingivalis Negatively Alters Gingival Cell Mitochondrial Bioenergetics
OBJECTIVE Oral inflammatory pathologies are linked to increased oxidative stress, thereby partly explaining their relevance in the etiology of systemic disorders. The purpose of this work was to determine the degree to which LPS from Porphyromonas gingivalis, the primary pathogen related to oral inflammation, altered gingival mitochondrial function and reactive oxygen species generation. METH...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of oral science
دوره 52 4 شماره
صفحات -
تاریخ انتشار 2010